feat: add hybrid-derived key injection

Extend HMAC metadata and builders to expose recommended key sizes and
enable safe derived-key injection without duplicating algorithm
configuration.

Key changes:
- Add HybridDerived utility for expanding hybrid KEX output and
  injecting purpose-separated keys, IVs/nonces and optional AAD into
  existing DataContent builders (AES-GCM, ChaCha, HMAC)
- Improve HmacSpec and HmacDataContentBuilder to expose recommended key
  material characteristics for derived use
- Refine HybridKexContexts to better support exporter-based derived
  workflows
- Add comprehensive unit tests for hybrid-derived functionality
- Add documented demo showing hybrid-derived AES-GCM encryption,
  including local (self-recipient) hybrid usage
- Introduce top-level sdk.hybrid package documentation and derived
  subpackage Javadoc

All changes are additive at the SDK layer; core cryptographic contracts
remain unchanged.

Signed-off-by: Leo Galambos <lg@hq.egothor.org>
This commit is contained in:
2025-12-26 21:00:01 +01:00
parent 55da24735f
commit 300f40c283
8 changed files with 1579 additions and 26 deletions

View File

@@ -137,4 +137,50 @@ public final class HmacSpec implements ContextSpec, Describable {
public String description() {
return macName;
}
/**
* Returns a recommended key size (in bits) for this HMAC variant.
*
* <p>
* HMAC is defined for keys of arbitrary length; this method therefore does not
* express a strict requirement. It provides a conservative,
* interoperability-friendly recommendation intended for default key derivation
* and key generation paths, especially where the caller does not want to
* manually select a key size.
* </p>
*
* <p>
* The recommendation follows common practice: use a key size at least equal to
* the underlying hash output length. For the built-in variants this yields:
* </p>
* <ul>
* <li>HmacSHA256 - 256 bits</li>
* <li>HmacSHA384 - 384 bits</li>
* <li>HmacSHA512 - 512 bits</li>
* </ul>
*
* <p>
* If this spec uses an unrecognized {@link #macName()} value, the method
* returns {@code 256} bits as a safe default and to avoid failing existing
* applications that rely on custom provider names. Applications with strict
* requirements should enforce their own policy and/or explicitly specify a key
* size.
* </p>
*
* @return recommended key size in bits (positive, multiple of 8)
* @since 1.0
*/
public int recommendedKeyBits() {
return recommendedKeyBitsForMacName(macName);
}
private static int recommendedKeyBitsForMacName(String macName) {
return switch (macName) {
case "HmacSHA256" -> 256;
case "HmacSHA384" -> 384;
case "HmacSHA512" -> 512;
default -> 256;
};
}
}

View File

@@ -253,6 +253,40 @@ public final class HmacDataContentBuilder implements DataContentBuilder<PlainCon
return new HmacDataContentBuilder();
}
/**
* Returns the currently configured HMAC specification.
*
* <p>
* This accessor is intentionally read-only and exists to support safe
* integrations (for example hybrid-derived key injection) without duplicating
* the HMAC variant configuration outside of this builder.
* </p>
*
* @return current HMAC spec (never null)
* @since 1.0
*/
public HmacSpec spec() {
return this.spec;
}
/**
* Returns a recommended HMAC key size (in bits) for the currently configured
* {@link #spec()}.
*
* <p>
* This is a convenience forwarding method to
* {@link HmacSpec#recommendedKeyBits()} and is intended as the default choice
* for derived-key integrations. Callers that intentionally need a non-default
* size may override it explicitly.
* </p>
*
* @return recommended key size in bits (positive, multiple of 8)
* @since 1.0
*/
public int recommendedKeyBits() {
return this.spec.recommendedKeyBits();
}
/**
* Switches the builder to MAC mode.
*

View File

@@ -0,0 +1,378 @@
/*******************************************************************************
* Copyright (C) 2025, Leo Galambos
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. All advertising materials mentioning features or use of this software must
* display the following acknowledgement:
* This product includes software developed by the Egothor project.
*
* 4. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
package zeroecho.sdk.hybrid.derived;
import java.util.Objects;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import zeroecho.core.alg.hmac.HmacSpec;
import zeroecho.sdk.builders.alg.AesDataContentBuilder;
import zeroecho.sdk.builders.alg.ChaChaDataContentBuilder;
import zeroecho.sdk.builders.alg.HmacDataContentBuilder;
import zeroecho.sdk.hybrid.kex.HybridKexExporter;
/**
* Builder-style utility for deriving purpose-separated key material from a
* hybrid KEX exporter and applying it to streaming algorithm builders.
*
* <p>
* This class does not implement new cryptographic primitives. It derives keying
* bytes via HKDF labels (using {@link HybridKexExporter}) and injects them into
* existing builder instances.
* </p>
*
* <h2>Labeling</h2>
* <p>
* Derivation uses a base label, plus fixed suffixes for individual fields:
* </p>
* <ul>
* <li>{@code label + "/key"} for the secret key</li>
* <li>{@code label + "/iv"} for AES IV</li>
* <li>{@code label + "/nonce"} for ChaCha nonce</li>
* <li>{@code label + "/aad"} for AEAD AAD (optional, if derived)</li>
* </ul>
*
* <p>
* A caller-supplied transcript binding (public handshake context) may be
* included and will be passed to the exporter as {@code info}. This improves
* cross-protocol separation and reduces configuration mistakes.
* </p>
*
* <h2>Thread safety</h2>
* <p>
* Instances are mutable and not thread-safe.
* </p>
*
* @since 1.0
*/
public final class HybridDerived {
private final HybridKexExporter exporter;
private String label;
private byte[] transcript;
private byte[] aadExplicit;
private boolean aadDerive;
private int aadDeriveLen;
/**
* Creates a new derived-material builder backed by an exporter.
*
* @param exporter exporter seeded from a hybrid KEX result (must not be null)
* @return new derived-material builder
* @throws NullPointerException if exporter is null
* @since 1.0
*/
public static HybridDerived from(HybridKexExporter exporter) {
Objects.requireNonNull(exporter, "exporter");
return new HybridDerived(exporter);
}
private HybridDerived(HybridKexExporter exporter) {
this.exporter = exporter;
}
/**
* Sets the base label used for purpose separation.
*
* <p>
* The label should identify the protocol purpose of the derived material, for
* example {@code "app/enc"} or {@code "handshake/confirm"}.
* </p>
*
* @param label base label (must not be null or empty)
* @return this builder
* @throws NullPointerException if label is null
* @throws IllegalArgumentException if label is empty
* @since 1.0
*/
public HybridDerived label(String label) {
Objects.requireNonNull(label, "label");
if (label.isEmpty()) {
throw new IllegalArgumentException("label must not be empty");
}
this.label = label;
return this;
}
/**
* Sets transcript binding bytes used as exporter {@code info}.
*
* <p>
* The transcript should contain only public context (negotiated suite, public
* keys/messages, channel binding, etc.). It must not contain secrets.
* </p>
*
* @param transcript transcript bytes (may be null to clear)
* @return this builder
* @since 1.0
*/
public HybridDerived transcript(byte[] transcript) {
this.transcript = (transcript == null) ? null : transcript.clone();
return this;
}
/**
* Supplies explicit AAD bytes to be injected into AEAD builders.
*
* <p>
* If set, no AAD derivation is performed.
* </p>
*
* @param aad AAD bytes (may be null to clear)
* @return this builder
* @since 1.0
*/
public HybridDerived aad(byte[] aad) {
this.aadExplicit = (aad == null) ? null : aad.clone();
this.aadDerive = false;
this.aadDeriveLen = 0;
return this;
}
/**
* Requests deterministic derivation of AAD bytes from the exporter.
*
* <p>
* This is optional. Many applications prefer to keep AAD as an
* application-defined, already-available public context. If derived, the AAD is
* separated using {@code label + "/aad"}.
* </p>
*
* @param aadLen number of bytes to derive (must be &gt;= 1)
* @return this builder
* @throws IllegalArgumentException if aadLen &lt; 1
* @since 1.0
*/
public HybridDerived deriveAad(int aadLen) {
if (aadLen < 1) { // NOPMD
throw new IllegalArgumentException("aadLen must be >= 1");
}
this.aadDerive = true;
this.aadDeriveLen = aadLen;
this.aadExplicit = null;
return this;
}
/**
* Derives an AES key and applies it (and optional IV/AAD) to the provided AES
* builder.
*
* <p>
* The returned value is the same builder instance to preserve fluent pipeline
* construction.
* </p>
*
* @param aes AES builder to configure (must not be null)
* @param keyBits AES key size in bits (128/192/256)
* @param ivLenBytes if &gt; 0, derive IV of this length and inject it via
* {@code withIv(...)}; if 0, do not set IV (header/ctx may
* generate it)
* @return the provided builder instance
* @throws NullPointerException if aes is null
* @throws IllegalArgumentException if keyBits is invalid
* @since 1.0
*/
public AesDataContentBuilder applyToAesGcm(AesDataContentBuilder aes, int keyBits, int ivLenBytes) {
Objects.requireNonNull(aes, "aes");
validateBase();
int keyLenBytes = bitsToBytesStrict(keyBits);
byte[] keyRaw = exportBytes(label + "/key", keyLenBytes); // NOPMD
SecretKey key = new SecretKeySpec(keyRaw, "AES");
aes.withKey(key);
if (ivLenBytes > 0) {
byte[] iv = exportBytes(label + "/iv", ivLenBytes);
aes.withIv(iv);
}
byte[] aad = resolveAad();
if (aad != null) {
aes.withAad(aad);
}
return aes;
}
/**
* Derives a ChaCha key and applies it (and optional nonce/AAD) to the provided
* ChaCha builder.
*
* <p>
* The returned value is the same builder instance to preserve fluent pipeline
* construction.
* </p>
*
* @param chacha ChaCha builder to configure (must not be null)
* @param keyBits key size in bits (typically 256)
* @param nonceLenBytes if &gt; 0, derive nonce of this length and inject it via
* {@code withNonce(...)}; if 0, do not set nonce
* (header/ctx may generate it)
* @return the provided builder instance
* @throws NullPointerException if chacha is null
* @throws IllegalArgumentException if keyBits is invalid
* @since 1.0
*/
public ChaChaDataContentBuilder applyToChaChaAead(ChaChaDataContentBuilder chacha, int keyBits, int nonceLenBytes) {
Objects.requireNonNull(chacha, "chacha");
validateBase();
int keyLenBytes = bitsToBytesStrict(keyBits);
byte[] keyRaw = exportBytes(label + "/key", keyLenBytes); // NOPMD
SecretKey key = new SecretKeySpec(keyRaw, "ChaCha20");
chacha.withKey(key);
if (nonceLenBytes > 0) {
byte[] nonce = exportBytes(label + "/nonce", nonceLenBytes);
chacha.withNonce(nonce);
}
byte[] aad = resolveAad();
if (aad != null) {
chacha.withAad(aad);
}
return chacha;
}
/**
* Derives a MAC key using the builder's recommended size and applies it to the
* provided HMAC builder.
*
* <p>
* This is the preferred integration method because it avoids duplicated
* configuration: the HMAC variant is chosen by the builder
* ({@link HmacDataContentBuilder#spec()}), and the key size recommendation is
* provided by {@link HmacDataContentBuilder#recommendedKeyBits()}.
* </p>
*
* <p>
* The returned value is the same builder instance to preserve fluent pipeline
* construction.
* </p>
*
* @param hmac HMAC builder to configure (must not be null)
* @return the provided builder instance
* @throws NullPointerException if {@code hmac} is null
* @throws IllegalStateException if this {@code HybridDerived} instance is
* missing required base configuration
* @since 1.0
*/
public HmacDataContentBuilder applyToHmac(HmacDataContentBuilder hmac) {
Objects.requireNonNull(hmac, "hmac");
validateBase();
int keyBits = hmac.recommendedKeyBits();
return applyToHmac(hmac, keyBits);
}
/**
* Derives a MAC key of an explicit size (override) and applies it to the
* provided HMAC builder.
*
* <p>
* This overload exists for advanced use-cases where the application
* intentionally chooses a key size different from
* {@link HmacSpec#recommendedKeyBits()}, for example to align a policy across
* different MAC functions or to satisfy interoperability constraints.
* </p>
*
* <p>
* Because HMAC accepts arbitrary key lengths, this method does not attempt to
* validate semantic suitability of {@code keyBits}. Applications that require
* stricter controls should enforce them via policy (for example minimum bit
* strength) and use transcript-bound labels to guarantee key separation.
* </p>
*
* <p>
* The returned value is the same builder instance to preserve fluent pipeline
* construction.
* </p>
*
* @param hmac HMAC builder to configure (must not be null)
* @param keyBits key size in bits (must be a positive multiple of 8)
* @return the provided builder instance
* @throws NullPointerException if {@code hmac} is null
* @throws IllegalArgumentException if {@code keyBits} is invalid
* @throws IllegalStateException if this {@code HybridDerived} instance is
* missing required base configuration
* @since 1.0
*/
public HmacDataContentBuilder applyToHmac(HmacDataContentBuilder hmac, int keyBits) {
Objects.requireNonNull(hmac, "hmac");
validateBase();
int keyLenBytes = bitsToBytesStrict(keyBits);
byte[] keyRaw = exportBytes(label + "/key", keyLenBytes);
// Prefer raw import to avoid duplicating MAC algorithm naming and to keep the
// builder as the source of truth.
return hmac.importKeyRaw(keyRaw);
}
private void validateBase() {
if (label == null || label.isEmpty()) {
throw new IllegalStateException("label must be set");
}
}
private byte[] resolveAad() {
if (aadExplicit != null) {
return aadExplicit.clone();
}
if (aadDerive) {
return exportBytes(label + "/aad", aadDeriveLen);
}
return null; // NOPMD
}
private byte[] exportBytes(String subLabel, int len) {
byte[] info = transcript;
return exporter.export(subLabel, info, len);
}
private static int bitsToBytesStrict(int bits) {
if (bits < 8 || (bits % 8) != 0) {
throw new IllegalArgumentException("bits must be a positive multiple of 8");
}
return bits / 8;
}
}

View File

@@ -32,32 +32,36 @@
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
package zeroecho.sdk.hybrid;
/**
* Base exception type for hybrid framework failures.
* Derived-key utilities for integrating hybrid KEX output with streaming
* builders.
*
* <p>
* This package provides a thin, SDK-level integration layer between hybrid key
* exchange ({@link zeroecho.sdk.hybrid.kex.HybridKexContext} /
* {@link zeroecho.sdk.hybrid.kex.HybridKexExporter}) and streaming data-content
* builders (for example AES/ChaCha/HMAC builders in
* {@link zeroecho.sdk.builders.alg}).
* </p>
*
* <p>
* The central concept is <b>derived material</b>: purpose-separated keying
* bytes (key, optional IV/nonce, optional AAD) derived via HKDF labels. The
* material is then applied to an existing builder via {@code applyTo(...)}
* which returns the same builder instance to preserve fluent pipeline
* construction.
* </p>
*
* <h2>Design goals</h2>
* <ul>
* <li>Keep cryptographic primitives unchanged; only inject derived
* parameters.</li>
* <li>Provide safe-by-construction key separation using labels and transcript
* binding.</li>
* <li>Preserve fluent builder usage by returning the original builder from
* {@code applyTo(...)}.</li>
* </ul>
*
* @since 1.0
*/
public class HybridException extends Exception {
private static final long serialVersionUID = -3704484377176409054L;
/**
* Creates a new exception with a message.
*
* @param message error description
*/
public HybridException(String message) {
super(message);
}
/**
* Creates a new exception with a message and a cause.
*
* @param message error description
* @param cause underlying cause
*/
public HybridException(String message, Throwable cause) {
super(message, cause);
}
}
package zeroecho.sdk.hybrid.derived;

View File

@@ -85,7 +85,7 @@ import zeroecho.core.spec.ContextSpec;
* <h2>Error handling</h2>
* <p>
* Underlying context construction uses
* {@link CryptoAlgorithms#create(String, KeyUsage, java.security.Key, Object)}
* {@link CryptoAlgorithms#create(String, KeyUsage, java.security.Key, ContextSpec)}
* which may throw {@link IOException}. These factory methods propagate the
* checked exception to keep failures explicit and auditable.
* </p>

View File

@@ -0,0 +1,94 @@
/*******************************************************************************
* Copyright (C) 2025, Leo Galambos
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. All advertising materials mentioning features or use of this software must
* display the following acknowledgement:
* This product includes software developed by the Egothor project.
*
* 4. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
/**
* SDK-level hybrid cryptography utilities.
*
* <p>
* This package groups hybrid composition helpers that combine classical and
* post-quantum primitives at the SDK layer while keeping the underlying core
* contracts unchanged. Hybrid constructions are exposed as regular streaming
* contexts and builder integrations, so they can be used with existing pipeline
* APIs (for example {@link zeroecho.sdk.builders.core.DataContentChainBuilder}
* and trailer-oriented stages).
* </p>
*
* <h2>Subpackages</h2>
* <ul>
* <li>{@link zeroecho.sdk.hybrid.kex} - hybrid key exchange (KEX) that composes
* a classic agreement and a message-based (KEM-style) agreement into a single
* derived shared secret, and emits an explicit peer message suitable for
* transport.</li>
* <li>{@link zeroecho.sdk.hybrid.derived} - derived-key utilities that consume
* hybrid KEX output and inject purpose-separated keying material (key, optional
* IV/nonce, optional AAD) into streaming builders while preserving fluent
* builder usage.</li>
* <li>{@link zeroecho.sdk.hybrid.signature} - hybrid signature composition that
* combines two independent signature schemes and exposes them as a single
* streaming {@link zeroecho.core.context.SignatureContext} suitable for
* trailer-style pipeline stages.</li>
* </ul>
*
* <h2>Design principles</h2>
* <ul>
* <li><b>Composition over modification</b>: hybrids are implemented as
* SDK-level compositions over existing core contexts rather than by expanding
* core API contracts.</li>
* <li><b>Explicit messages where needed</b>: whenever a hybrid operation has
* "to-be-sent" bytes (for example KEX peer messages), they are modeled as
* explicit byte sequences rather than hidden side effects.</li>
* <li><b>Key separation via KDF</b>: hybrid secrets are combined and expanded
* using HKDF label separation and transcript binding; concatenation is avoided
* as a primary combination method.</li>
* </ul>
*
* <h2>Security notes</h2>
* <ul>
* <li>Hybrid constructions increase protocol and implementation complexity.
* Prefer clear profiles, stable transcript inputs, and explicit policy to avoid
* ambiguous security expectations.</li>
* <li>Do not log or otherwise expose sensitive material (private keys, seeds,
* derived keying bytes, plaintexts, intermediate secrets).</li>
* </ul>
*
* <h2>Thread safety</h2>
* <p>
* Hybrid contexts and builders are not thread-safe. Create a new instance per
* independent operation and do not share instances across concurrent pipeline
* executions.
* </p>
*
* @since 1.0
*/
package zeroecho.sdk.hybrid;

View File

@@ -0,0 +1,341 @@
/*******************************************************************************
* Copyright (C) 2025, Leo Galambos
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. All advertising materials mentioning features or use of this software must
* display the following acknowledgement:
* This product includes software developed by the Egothor project.
*
* 4. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
package zeroecho.sdk.hybrid.derived;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertSame;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.nio.charset.StandardCharsets;
import java.security.SecureRandom;
import java.util.Arrays;
import org.junit.jupiter.api.Test;
import zeroecho.sdk.builders.alg.AesDataContentBuilder;
import zeroecho.sdk.builders.alg.ChaChaDataContentBuilder;
import zeroecho.sdk.builders.alg.HmacDataContentBuilder;
import zeroecho.sdk.builders.core.DataContentBuilder;
import zeroecho.sdk.builders.core.DataContentChainBuilder;
import zeroecho.sdk.builders.core.PlainBytesBuilder;
import zeroecho.sdk.content.api.DataContent;
import zeroecho.sdk.hybrid.kex.HybridKexExporter;
/**
* Coverage tests for {@link HybridDerived} derived-material application
* helpers.
*
* <p>
* The tests use deterministic exporter inputs (fixed OKM and salt) to ensure
* stable results.
* </p>
*/
public class HybridDerivedTest {
@Test
void aes_gcm_applyTo_roundtrip() throws Exception {
System.out.println("aes_gcm_applyTo_roundtrip()");
HybridKexExporter exporter = testExporter();
byte[] transcript = "demo-transcript".getBytes(StandardCharsets.UTF_8);
byte[] aad = "aad".getBytes(StandardCharsets.UTF_8);
byte[] msg = fixedBytes(1024, (byte) 0x5A);
AesDataContentBuilder encAes = AesDataContentBuilder.builder().withHeader().modeGcm(128);
AesDataContentBuilder returnedEnc = HybridDerived.from(exporter).label("app/enc/aes").transcript(transcript)
.aad(aad).applyToAesGcm(encAes, 256, 12);
System.out.println("...returnedEncSame=" + (returnedEnc == encAes));
assertSame(encAes, returnedEnc);
byte[] ciphertext = runEncrypt(encAes, msg);
System.out.println("...ciphertextLen=" + ciphertext.length);
System.out.println("...ciphertextPrefix=" + shortHex(ciphertext, 32));
AesDataContentBuilder decAes = AesDataContentBuilder.builder().withHeader().modeGcm(128);
HybridDerived.from(exporter).label("app/enc/aes").transcript(transcript).aad(aad).applyToAesGcm(decAes, 256,
12);
byte[] out = runDecrypt(decAes, ciphertext);
System.out.println("...outPrefix=" + shortHex(out, 32));
assertArrayEquals(msg, out);
System.out.println("aes_gcm_applyTo_roundtrip...ok");
}
@Test
void aes_gcm_applyTo_negative_label_mismatch() throws Exception {
System.out.println("aes_gcm_applyTo_negative_label_mismatch()");
HybridKexExporter exporter = testExporter();
byte[] transcript = "demo-transcript".getBytes(StandardCharsets.UTF_8);
byte[] aad = "aad".getBytes(StandardCharsets.UTF_8);
byte[] msg = fixedBytes(256, (byte) 0x1C);
AesDataContentBuilder encAes = AesDataContentBuilder.builder().withHeader().modeGcm(128);
HybridDerived.from(exporter).label("app/enc/aes").transcript(transcript).aad(aad).applyToAesGcm(encAes, 256,
12);
byte[] ciphertext = runEncrypt(encAes, msg);
System.out.println("...ciphertextLen=" + ciphertext.length);
AesDataContentBuilder decAesWrong = AesDataContentBuilder.builder().withHeader().modeGcm(128);
// ...label mismatch -> wrong key/iv/aad -> decryption must fail
HybridDerived.from(exporter).label("app/enc/aes_WRONG").transcript(transcript).aad(aad)
.applyToAesGcm(decAesWrong, 256, 12);
assertThrows(Exception.class, () -> runDecrypt(decAesWrong, ciphertext));
System.out.println("aes_gcm_applyTo_negative_label_mismatch...ok");
}
@Test
void chacha_aead_applyTo_roundtrip() throws Exception {
System.out.println("chacha_aead_applyTo_roundtrip()");
HybridKexExporter exporter = testExporter();
byte[] transcript = "demo-transcript".getBytes(StandardCharsets.UTF_8);
byte[] aad = "aad".getBytes(StandardCharsets.UTF_8);
byte[] msg = fixedBytes(777, (byte) 0x33);
ChaChaDataContentBuilder encChaCha = ChaChaDataContentBuilder.builder().withHeader();
ChaChaDataContentBuilder returnedEnc = HybridDerived.from(exporter).label("app/enc/chacha")
.transcript(transcript).aad(aad).applyToChaChaAead(encChaCha, 256, 12);
System.out.println("...returnedEncSame=" + (returnedEnc == encChaCha));
assertSame(encChaCha, returnedEnc);
byte[] ciphertext = runEncrypt(encChaCha, msg);
System.out.println("...ciphertextLen=" + ciphertext.length);
System.out.println("...ciphertextPrefix=" + shortHex(ciphertext, 32));
ChaChaDataContentBuilder decChaCha = ChaChaDataContentBuilder.builder().withHeader();
HybridDerived.from(exporter).label("app/enc/chacha").transcript(transcript).aad(aad)
.applyToChaChaAead(decChaCha, 256, 12);
byte[] out = runDecrypt(decChaCha, ciphertext);
System.out.println("...outPrefix=" + shortHex(out, 32));
assertArrayEquals(msg, out);
System.out.println("chacha_aead_applyTo_roundtrip...ok");
}
@Test
void hmac_applyTo_default_and_override() throws Exception {
System.out.println("hmac_applyTo_default_and_override()");
HybridKexExporter exporter = testExporter();
byte[] transcript = "demo-transcript".getBytes(StandardCharsets.UTF_8);
byte[] msg = fixedBytes(2048, (byte) 0x7E);
// --------------------
// Default key size path: applyToHmac(hmac) derives key using builder's
// recommended bits
// --------------------
HmacDataContentBuilder macBuilder = HmacDataContentBuilder.builder().sha256().emitHexTag();
int recommendedBits = macBuilder.recommendedKeyBits();
System.out.println("...recommendedBits=" + recommendedBits);
HybridDerived.from(exporter).label("app/mac/hmac-default").transcript(transcript).applyToHmac(macBuilder);
String tagHex = runHmacHex(macBuilder, msg);
System.out.println("...tagHexPrefix=" + shortText(tagHex, 64));
HmacDataContentBuilder verifyBuilder = HmacDataContentBuilder.builder().sha256().expectedTagHex(tagHex)
.emitVerificationBoolean();
HybridDerived.from(exporter).label("app/mac/hmac-default").transcript(transcript).applyToHmac(verifyBuilder);
String ok = runHmacVerifyBool(verifyBuilder, msg);
System.out.println("...verifyBool=" + ok);
assertEquals("true", ok);
// --------------------
// Override key size path: applyToHmac(hmac, keyBits)
// --------------------
HmacDataContentBuilder macBuilderOv = HmacDataContentBuilder.builder().sha256().emitHexTag();
// ...override to 512-bit keying material (still valid for HMAC; explicit expert
// choice)
HybridDerived.from(exporter).label("app/mac/hmac-override").transcript(transcript).applyToHmac(macBuilderOv,
512);
String tagHexOv = runHmacHex(macBuilderOv, msg);
System.out.println("...tagHexOvPrefix=" + shortText(tagHexOv, 64));
HmacDataContentBuilder verifyBuilderOv = HmacDataContentBuilder.builder().sha256().expectedTagHex(tagHexOv)
.emitVerificationBoolean();
HybridDerived.from(exporter).label("app/mac/hmac-override").transcript(transcript).applyToHmac(verifyBuilderOv,
512);
String okOv = runHmacVerifyBool(verifyBuilderOv, msg);
System.out.println("...verifyBoolOv=" + okOv);
assertEquals("true", okOv);
// --------------------
// Negative: wrong expected tag -> must emit "false"
// --------------------
HmacDataContentBuilder verifyBad = HmacDataContentBuilder.builder().sha256()
.expectedTagHex(tagHex.substring(0, Math.max(0, tagHex.length() - 2)) + "00").emitVerificationBoolean();
HybridDerived.from(exporter).label("app/mac/hmac-default").transcript(transcript).applyToHmac(verifyBad);
String bad = runHmacVerifyBool(verifyBad, msg);
System.out.println("...verifyBoolBad=" + bad);
assertEquals("false", bad);
// sanity: ensure the two tags differ (default vs override label/key schedule)
assertTrue(!tagHex.equals(tagHexOv));
System.out.println("hmac_applyTo_default_and_override...ok");
}
// --------------------
// helpers
// --------------------
private static HybridKexExporter testExporter() {
byte[] okm = fixedBytes(32, (byte) 0x11);
byte[] salt = fixedBytes(32, (byte) 0x22);
return new HybridKexExporter(okm, salt);
}
private static byte[] runEncrypt(DataContentBuilder<DataContent> algorithmBuilder, byte[] plaintext)
throws Exception {
DataContent enc = DataContentChainBuilder.encrypt().add(PlainBytesBuilder.builder().bytes(plaintext))
.add(algorithmBuilder).build();
try (InputStream in = enc.getStream()) {
return readAll(in);
}
}
private static byte[] runDecrypt(DataContentBuilder<DataContent> algorithmBuilder, byte[] ciphertext)
throws Exception {
DataContent dec = DataContentChainBuilder.decrypt().add(PlainBytesBuilder.builder().bytes(ciphertext))
.add(algorithmBuilder).build();
try (InputStream in = dec.getStream()) {
return readAll(in);
}
}
private static String runHmacHex(HmacDataContentBuilder macBuilder, byte[] msg) throws Exception {
DataContent dc = DataContentChainBuilder.encrypt().add(PlainBytesBuilder.builder().bytes(msg)).add(macBuilder)
.build();
byte[] out;
try (InputStream in = dc.getStream()) {
out = readAll(in);
}
String tagHex = new String(out, StandardCharsets.UTF_8).trim();
return tagHex;
}
private static String runHmacVerifyBool(HmacDataContentBuilder verifyBuilder, byte[] msg) throws Exception {
DataContent dc = DataContentChainBuilder.decrypt().add(PlainBytesBuilder.builder().bytes(msg))
.add(verifyBuilder).build();
byte[] out;
try (InputStream in = dc.getStream()) {
out = readAll(in);
}
String s = new String(out, StandardCharsets.UTF_8).trim();
return s;
}
private static byte[] fixedBytes(int len, byte v) {
byte[] b = new byte[len];
Arrays.fill(b, v);
return b;
}
private static byte[] readAll(InputStream in) throws Exception {
try (ByteArrayOutputStream out = new ByteArrayOutputStream()) {
in.transferTo(out);
out.flush();
return out.toByteArray();
}
}
private static String shortHex(byte[] data, int maxBytes) {
if (data == null) {
return "null";
}
int n = Math.min(data.length, Math.max(0, maxBytes));
StringBuilder sb = new StringBuilder(n * 2 + 3);
for (int i = 0; i < n; i++) {
int v = data[i] & 0xFF;
sb.append(Character.forDigit(v >>> 4, 16));
sb.append(Character.forDigit(v & 0x0F, 16));
}
if (data.length > n) {
sb.append("...");
}
return sb.toString();
}
private static String shortText(String s, int maxLen) {
if (s == null) {
return "null";
}
if (s.length() <= maxLen) {
return s;
}
return s.substring(0, maxLen) + "...";
}
@SuppressWarnings("unused")
private static byte[] randomBytes(int len) {
byte[] b = new byte[len];
new SecureRandom().nextBytes(b);
return b;
}
}

View File

@@ -0,0 +1,656 @@
/*******************************************************************************
* Copyright (C) 2025, Leo Galambos
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. All advertising materials mentioning features or use of this software must
* display the following acknowledgement:
* This product includes software developed by the Egothor project.
*
* 4. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
package demo;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.nio.charset.StandardCharsets;
import java.security.KeyPair;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.logging.Logger;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import zeroecho.core.CryptoAlgorithms;
import zeroecho.core.alg.kyber.KyberKeyGenSpec;
import zeroecho.core.alg.xdh.XdhSpec;
import zeroecho.sdk.builders.HybridKexBuilder;
import zeroecho.sdk.builders.alg.AesDataContentBuilder;
import zeroecho.sdk.builders.core.DataContentChainBuilder;
import zeroecho.sdk.builders.core.PlainBytesBuilder;
import zeroecho.sdk.content.api.DataContent;
import zeroecho.sdk.hybrid.derived.HybridDerived;
import zeroecho.sdk.hybrid.kex.HybridKexContext;
import zeroecho.sdk.hybrid.kex.HybridKexExporter;
import zeroecho.sdk.hybrid.kex.HybridKexProfile;
import zeroecho.sdk.hybrid.kex.HybridKexTranscript;
import zeroecho.sdk.util.BouncyCastleActivator;
/**
* Demonstration of hybrid-derived AEAD encryption and decryption.
*
* <p>
* This sample is intentionally structured in two variants:
* </p>
* <ul>
* <li><b>Condensed</b> - compact fluent chains suitable for everyday use.</li>
* <li><b>Expanded</b> - the same operations, step-by-step, for explanatory
* documentation.</li>
* </ul>
*
* <p>
* The hybrid combination (classic + PQC) happens in {@link HybridKexContext}.
* The derived layer ({@link HybridDerived}) consumes the exporter output (OKM +
* HKDF salt) and injects key/IV/AAD into existing streaming builders.
* </p>
*/
class HybridDerivedAesDemoTest {
private static final Logger LOG = Logger.getLogger(HybridDerivedAesDemoTest.class.getName());
@BeforeAll
static void setup() {
// Optional: enable BC if you use BC-only algorithms in the broader test suite.
try {
BouncyCastleActivator.init();
} catch (Throwable ignore) {
// Keep samples runnable without BC if not present.
}
}
@Test
void hybridDerived_aes_gcm_condensed() throws Exception {
System.out.println("hybridDerived_aes_gcm_condensed()");
LOG.info("Hybrid-derived AES-GCM demo (condensed form)");
// ...Select a standard hybrid KEX profile (HKDF info/salt + OKM length).
HybridKexProfile profile = HybridKexProfile.defaultProfile(32);
// ...Prepare plaintext.
byte[] msg = randomBytes(1024);
// ...Prepare transcript (public context bound into HKDF info and derived
// labels).
HybridKexTranscript transcript = new HybridKexTranscript().addUtf8("suite", "X25519+MLKEM768").addUtf8("demo",
"hybrid-derived-aes-gcm-condensed");
// ...Generate classic key pairs for X25519 (Xdh + XdhSpec.X25519).
KeyPair aliceClassic = CryptoAlgorithms.generateKeyPair("Xdh", XdhSpec.X25519);
KeyPair bobClassic = CryptoAlgorithms.generateKeyPair("Xdh", XdhSpec.X25519);
// ...Generate PQC key pair for ML-KEM-768 (recipient; used by Bob side to
// decapsulate).
KeyPair bobPqc = CryptoAlgorithms.generateKeyPair("ML-KEM", KyberKeyGenSpec.kyber768());
// ...Build Alice initiator: classic agreement (out-of-band peer pub) + PQC
// encapsulation.
HybridKexContext alice = HybridKexBuilder.builder()
// ...Set mandatory profile.
.profile(profile)
// ...Bind builder HKDF info to transcript.
.transcript(transcript)
// ...Select classic mode: peer public key is out-of-band.
.classicAgreement()
// ...Select classic algorithm id (Xdh).
.algorithm("Xdh")
// ...Select classic spec (X25519).
.spec(XdhSpec.X25519)
// ...Set Alice classic private key.
.privateKey(aliceClassic.getPrivate())
// ...Set Bob classic public key.
.peerPublic(bobClassic.getPublic())
// ...Switch to PQC KEM configuration.
.pqcKem()
// ...Select PQC algorithm id (ML-KEM).
.algorithm("ML-KEM")
// ...Set recipient PQC public key for encapsulation.
.peerPublic(bobPqc.getPublic())
// ...Build initiator context.
.buildInitiator();
// ...Build Bob responder: classic agreement + PQC decapsulation.
HybridKexContext bob = HybridKexBuilder.builder()
// ...Set mandatory profile.
.profile(profile)
// ...Bind builder HKDF info to transcript.
.transcript(transcript)
// ...Select classic mode: peer public key is out-of-band.
.classicAgreement()
// ...Select classic algorithm id (Xdh).
.algorithm("Xdh")
// ...Select classic spec (X25519).
.spec(XdhSpec.X25519)
// ...Set Bob classic private key.
.privateKey(bobClassic.getPrivate())
// ...Set Alice classic public key.
.peerPublic(aliceClassic.getPublic())
// ...Switch to PQC KEM configuration.
.pqcKem()
// ...Select PQC algorithm id (ML-KEM).
.algorithm("ML-KEM")
// ...Set recipient PQC private key for decapsulation.
.privateKey(bobPqc.getPrivate())
// ...Build responder context.
.buildResponder();
try {
// ...Alice produces peer message (PQC ciphertext; classic is out-of-band in
// this mode).
byte[] peerMsg = alice.getPeerMessage();
System.out.println("...peerMsg " + lens(peerMsg) + " " + shortHex(peerMsg, 48));
// ...Bob consumes the peer message to complete the PQC leg.
bob.setPeerMessage(peerMsg);
// ...Derive OKM on both sides (must match for a valid hybrid exchange).
byte[] okmA = alice.deriveSecret();
byte[] okmB = bob.deriveSecret();
System.out.println("...okmEqual " + Arrays.equals(okmA, okmB));
if (!Arrays.equals(okmA, okmB)) {
throw new IllegalStateException("Hybrid KEX mismatch");
}
// ...Create exporter directly from OKM and profile salt (avoid exporterFromOkm
// validation requirements).
HybridKexExporter exporter = new HybridKexExporter(okmA, profile.hkdfSalt());
// ...Choose explicit AAD (public) for AEAD; must match on decrypt.
byte[] aad = "aad:demo".getBytes(StandardCharsets.UTF_8);
// ...Encrypt: build pipeline in compact form with inline derived injection.
DataContent enc = DataContentChainBuilder.encrypt()
// ...Input: plaintext bytes.
.add(PlainBytesBuilder.builder().bytes(msg))
// ...AEAD: derive key/IV/AAD and inject into AES-GCM builder.
.add(HybridDerived.from(exporter)
// ...Purpose separation label for AEAD encryption.
.label("app/enc/aes-gcm")
// ...Bind derivation to transcript bytes (public).
.transcript(transcript.toByteArray())
// ...Inject explicit AAD.
.aad(aad)
// ...Apply derived key(256b) and IV(12B) to AES-GCM with header.
.applyToAesGcm(AesDataContentBuilder.builder()
// ...Store IV in header for decrypt side.
.withHeader()
// ...Use AES-GCM with 128-bit authentication tag.
.modeGcm(128), 256, 12))
// ...Finalize pipeline.
.build();
byte[] ciphertext;
try (InputStream in = enc.getStream()) {
ciphertext = readAll(in);
}
System.out.println("...ciphertext " + lens(ciphertext) + " " + shortHex(ciphertext, 48));
// ...Decrypt: rebuild the same derived inputs and run decrypt pipeline.
DataContent dec = DataContentChainBuilder.decrypt()
// ...Input: ciphertext bytes.
.add(PlainBytesBuilder.builder().bytes(ciphertext))
// ...AEAD: apply the same label/transcript/AAD to get identical key/IV.
.add(HybridDerived.from(exporter)
// ...Same purpose label as encryption.
.label("app/enc/aes-gcm")
// ...Same transcript binding as encryption.
.transcript(transcript.toByteArray())
// ...Same explicit AAD as encryption.
.aad(aad)
// ...Apply derived key and IV to AES-GCM with header.
.applyToAesGcm(AesDataContentBuilder.builder()
// ...Parse IV from header.
.withHeader()
// ...Use AES-GCM with 128-bit authentication tag.
.modeGcm(128), 256, 12))
// ...Finalize pipeline.
.build();
byte[] out;
try (InputStream in = dec.getStream()) {
out = readAll(in);
}
System.out.println("...plaintextEqual " + Arrays.equals(msg, out));
if (!Arrays.equals(msg, out)) {
throw new IllegalStateException("Roundtrip mismatch");
}
System.out.println("hybridDerived_aes_gcm_condensed...ok");
} finally {
closeQuiet(alice);
closeQuiet(bob);
}
}
@Test
void hybridDerived_aes_gcm_expanded() throws Exception {
System.out.println("hybridDerived_aes_gcm_expanded()");
LOG.info("Hybrid-derived AES-GCM demo (expanded form)");
// ...Select a standard hybrid KEX profile (HKDF info/salt + OKM length).
HybridKexProfile profile = HybridKexProfile.defaultProfile(32);
// ...Prepare plaintext.
byte[] msg = randomBytes(1024);
// ...Prepare transcript (public context bound into HKDF info and derived
// labels).
HybridKexTranscript transcript = new HybridKexTranscript().addUtf8("suite", "X25519+MLKEM768").addUtf8("demo",
"hybrid-derived-aes-gcm-expanded");
// ...Generate classic key pairs for X25519.
KeyPair aliceClassic = CryptoAlgorithms.generateKeyPair("Xdh", XdhSpec.X25519);
KeyPair bobClassic = CryptoAlgorithms.generateKeyPair("Xdh", XdhSpec.X25519);
// ...Generate PQC key pair for ML-KEM-768.
KeyPair bobPqc = CryptoAlgorithms.generateKeyPair("ML-KEM", KyberKeyGenSpec.kyber768());
// ...Build Alice initiator in a step-by-step manner.
HybridKexBuilder aliceBuilder = HybridKexBuilder.builder();
// ...Set mandatory profile.
aliceBuilder.profile(profile);
// ...Bind builder HKDF info to transcript.
aliceBuilder.transcript(transcript);
// ...Select classic mode: peer public key is out-of-band.
HybridKexBuilder.ClassicAgreement aliceClassicCfg = aliceBuilder.classicAgreement();
// ...Select classic algorithm id (Xdh).
aliceClassicCfg.algorithm("Xdh");
// ...Select classic spec (X25519).
aliceClassicCfg.spec(XdhSpec.X25519);
// ...Set Alice classic private key.
aliceClassicCfg.privateKey(aliceClassic.getPrivate());
// ...Set Bob classic public key.
aliceClassicCfg.peerPublic(bobClassic.getPublic());
// ...Switch to PQC KEM configuration.
HybridKexBuilder.PqcKem alicePqcCfg = aliceClassicCfg.pqcKem();
// ...Select PQC algorithm id (ML-KEM).
alicePqcCfg.algorithm("ML-KEM");
// ...Set recipient PQC public key for encapsulation.
alicePqcCfg.peerPublic(bobPqc.getPublic());
// ...Build initiator context.
HybridKexContext alice = alicePqcCfg.buildInitiator();
// ...Build Bob responder in a step-by-step manner.
HybridKexBuilder bobBuilder = HybridKexBuilder.builder();
// ...Set mandatory profile.
bobBuilder.profile(profile);
// ...Bind builder HKDF info to transcript.
bobBuilder.transcript(transcript);
// ...Select classic mode: peer public key is out-of-band.
HybridKexBuilder.ClassicAgreement bobClassicCfg = bobBuilder.classicAgreement();
// ...Select classic algorithm id (Xdh).
bobClassicCfg.algorithm("Xdh");
// ...Select classic spec (X25519).
bobClassicCfg.spec(XdhSpec.X25519);
// ...Set Bob classic private key.
bobClassicCfg.privateKey(bobClassic.getPrivate());
// ...Set Alice classic public key.
bobClassicCfg.peerPublic(aliceClassic.getPublic());
// ...Switch to PQC KEM configuration.
HybridKexBuilder.PqcKem bobPqcCfg = bobClassicCfg.pqcKem();
// ...Select PQC algorithm id (ML-KEM).
bobPqcCfg.algorithm("ML-KEM");
// ...Set recipient PQC private key for decapsulation.
bobPqcCfg.privateKey(bobPqc.getPrivate());
// ...Build responder context.
HybridKexContext bob = bobPqcCfg.buildResponder();
try {
// ...Alice produces peer message (PQC ciphertext in this classic mode).
byte[] peerMsg = alice.getPeerMessage();
System.out.println("...peerMsg " + lens(peerMsg) + " " + shortHex(peerMsg, 48));
// ...Bob consumes peer message to complete the PQC leg.
bob.setPeerMessage(peerMsg);
// ...Derive OKM and ensure both sides match.
byte[] okmA = alice.deriveSecret();
byte[] okmB = bob.deriveSecret();
System.out.println("...okmEqual " + Arrays.equals(okmA, okmB));
if (!Arrays.equals(okmA, okmB)) {
throw new IllegalStateException("Hybrid KEX mismatch");
}
// ...Create exporter directly from OKM and profile salt.
HybridKexExporter exporter = new HybridKexExporter(okmA, profile.hkdfSalt());
// ...Choose explicit AAD (public) for AEAD.
byte[] aad = "aad:demo:expanded".getBytes(StandardCharsets.UTF_8);
// ...Prepare AES builder for encryption.
AesDataContentBuilder aesEnc = AesDataContentBuilder.builder();
// ...Store IV in header.
aesEnc.withHeader();
// ...Use AES-GCM with 128-bit authentication tag.
aesEnc.modeGcm(128);
// ...Inject derived key/IV/AAD into AES builder.
HybridDerived.from(exporter)
// ...Purpose separation label for AEAD.
.label("app/enc/aes-gcm")
// ...Bind derivation to transcript bytes.
.transcript(transcript.toByteArray())
// ...Inject explicit AAD.
.aad(aad)
// ...Apply derived key(256b) and IV(12B).
.applyToAesGcm(aesEnc, 256, 12);
// ...Build encryption pipeline.
DataContent enc = DataContentChainBuilder.encrypt()
// ...Input: plaintext bytes.
.add(PlainBytesBuilder.builder().bytes(msg))
// ...AES encryption stage.
.add(aesEnc)
// ...Finalize.
.build();
byte[] ciphertext;
try (InputStream in = enc.getStream()) {
ciphertext = readAll(in);
}
System.out.println("...ciphertext " + lens(ciphertext) + " " + shortHex(ciphertext, 48));
// ...Prepare AES builder for decryption.
AesDataContentBuilder aesDec = AesDataContentBuilder.builder();
// ...Parse IV from header.
aesDec.withHeader();
// ...Use AES-GCM with 128-bit authentication tag.
aesDec.modeGcm(128);
// ...Inject the same derived key/IV/AAD into decryption builder.
HybridDerived.from(exporter)
// ...Same purpose label.
.label("app/enc/aes-gcm")
// ...Same transcript binding.
.transcript(transcript.toByteArray())
// ...Same explicit AAD.
.aad(aad)
// ...Apply the same derived key and IV.
.applyToAesGcm(aesDec, 256, 12);
// ...Build decryption pipeline.
DataContent dec = DataContentChainBuilder.decrypt()
// ...Input: ciphertext bytes.
.add(PlainBytesBuilder.builder().bytes(ciphertext))
// ...AES decryption stage.
.add(aesDec)
// ...Finalize.
.build();
byte[] out;
try (InputStream in = dec.getStream()) {
out = readAll(in);
}
System.out.println("...plaintextEqual " + Arrays.equals(msg, out));
if (!Arrays.equals(msg, out)) {
throw new IllegalStateException("Roundtrip mismatch");
}
System.out.println("hybridDerived_aes_gcm_expanded...ok");
} finally {
closeQuiet(alice);
closeQuiet(bob);
}
}
@Test
void hybridDerived_aes_gcm_local_self_recipient() throws Exception {
System.out.println("hybridDerived_aes_gcm_local_self_recipient()");
LOG.info("Hybrid-derived AES-GCM demo (local self-recipient)");
// ...Select a standard hybrid KEX profile (HKDF info/salt + OKM length).
HybridKexProfile profile = HybridKexProfile.defaultProfile(32);
// ...Prepare plaintext.
byte[] msg = randomBytes(1024);
// ...Prepare transcript (public context bound into KDF and derived labels).
HybridKexTranscript transcript = new HybridKexTranscript()
// ...Identify the suite used by this envelope.
.addUtf8("suite", "X25519+MLKEM768")
// ...Identify that this is a local/self-recipient envelope.
.addUtf8("mode", "local-self");
// ...Choose explicit AAD (public) for AEAD; must match on decrypt.
byte[] aad = "aad:local-self".getBytes(StandardCharsets.UTF_8);
// ...Generate classic identity keys (X25519).
KeyPair selfClassic = CryptoAlgorithms.generateKeyPair("Xdh", XdhSpec.X25519);
// ...Generate PQC identity keys (ML-KEM-768).
KeyPair selfPqc = CryptoAlgorithms.generateKeyPair("ML-KEM", KyberKeyGenSpec.kyber768());
// ...Build local initiator (encapsulation) against our own public keys.
HybridKexContext encKex = HybridKexBuilder.builder()
// ...Set mandatory profile.
.profile(profile)
// ...Bind derivation to transcript.
.transcript(transcript)
// ...Select classic mode: peer public key is known out-of-band (here: our own
// public key).
.classicAgreement()
// ...Classic algorithm id (X25519).
.algorithm("Xdh")
// ...Classic spec (X25519).
.spec(XdhSpec.X25519)
// ...Use our private key.
.privateKey(selfClassic.getPrivate())
// ...Use our public key as the peer public key (self-recipient).
.peerPublic(selfClassic.getPublic())
// ...Switch to PQC KEM.
.pqcKem()
// ...PQC algorithm id (ML-KEM).
.algorithm("ML-KEM")
// ...Use our PQC public key as the recipient key for encapsulation.
.peerPublic(selfPqc.getPublic())
// ...Build initiator.
.buildInitiator();
// ...Produce the envelope header (peer message); must be stored next to
// ciphertext.
byte[] peerMsg = encKex.getPeerMessage();
System.out.println("...peerMsg " + lens(peerMsg) + " " + shortHex(peerMsg, 48));
// ...Derive OKM for this local envelope.
byte[] okm = encKex.deriveSecret();
System.out.println("...okm " + shortHex(okm, 48));
// ...Create exporter directly from OKM and profile salt.
HybridKexExporter exporter = new HybridKexExporter(okm, profile.hkdfSalt());
// ...Encrypt: build pipeline; derived key/IV/AAD are injected into AES-GCM.
DataContent enc = DataContentChainBuilder.encrypt()
// ...Input: plaintext bytes.
.add(PlainBytesBuilder.builder().bytes(msg))
// ...AEAD: inject derived material into AES-GCM builder.
.add(HybridDerived.from(exporter)
// ...Purpose separation label for AEAD encryption.
.label("app/local/aes-gcm")
// ...Bind derivation to transcript bytes.
.transcript(transcript.toByteArray())
// ...Inject explicit AAD.
.aad(aad)
// ...Apply derived key(256b) and IV(12B) to AES-GCM with header.
.applyToAesGcm(AesDataContentBuilder.builder()
// ...Store IV in header for decrypt side.
.withHeader()
// ...Use AES-GCM with 128-bit authentication tag.
.modeGcm(128), 256, 12))
// ...Finalize pipeline.
.build();
byte[] ciphertext;
try (InputStream in = enc.getStream()) {
ciphertext = readAll(in);
}
System.out.println("...ciphertext " + lens(ciphertext) + " " + shortHex(ciphertext, 48));
// ...Build local responder (decapsulation) using our own private keys and
// stored peer message.
HybridKexContext decKex = HybridKexBuilder.builder()
// ...Set mandatory profile.
.profile(profile)
// ...Bind derivation to transcript.
.transcript(transcript)
// ...Select classic mode: peer public key is known out-of-band (here: our own
// public key).
.classicAgreement()
// ...Classic algorithm id (X25519).
.algorithm("Xdh")
// ...Classic spec (X25519).
.spec(XdhSpec.X25519)
// ...Use our private key.
.privateKey(selfClassic.getPrivate())
// ...Use our public key as the peer public key (self-recipient).
.peerPublic(selfClassic.getPublic())
// ...Switch to PQC KEM.
.pqcKem()
// ...PQC algorithm id (ML-KEM).
.algorithm("ML-KEM")
// ...Use our PQC private key for decapsulation.
.privateKey(selfPqc.getPrivate())
// ...Build responder.
.buildResponder();
try {
// ...Provide the stored peer message (envelope header) to complete
// decapsulation.
decKex.setPeerMessage(peerMsg);
// ...Derive the same OKM and create the exporter.
byte[] okmDec = decKex.deriveSecret();
System.out.println("...okmEqual " + Arrays.equals(okm, okmDec));
if (!Arrays.equals(okm, okmDec)) {
throw new IllegalStateException("Local hybrid envelope mismatch");
}
HybridKexExporter exporterDec = new HybridKexExporter(okmDec, profile.hkdfSalt());
// ...Decrypt: rebuild the same derived inputs and run decrypt pipeline.
DataContent dec = DataContentChainBuilder.decrypt()
// ...Input: ciphertext bytes.
.add(PlainBytesBuilder.builder().bytes(ciphertext))
// ...AEAD: apply the same label/transcript/AAD to get identical key/IV.
.add(HybridDerived.from(exporterDec)
// ...Same purpose label as encryption.
.label("app/local/aes-gcm")
// ...Same transcript binding.
.transcript(transcript.toByteArray())
// ...Same explicit AAD.
.aad(aad)
// ...Apply derived key and IV to AES-GCM with header.
.applyToAesGcm(AesDataContentBuilder.builder()
// ...Parse IV from header.
.withHeader()
// ...Use AES-GCM with 128-bit authentication tag.
.modeGcm(128), 256, 12))
// ...Finalize pipeline.
.build();
byte[] out;
try (InputStream in = dec.getStream()) {
out = readAll(in);
}
System.out.println("...plaintextEqual " + Arrays.equals(msg, out));
if (!Arrays.equals(msg, out)) {
throw new IllegalStateException("Roundtrip mismatch");
}
System.out.println("hybridDerived_aes_gcm_local_self_recipient...ok");
} finally {
closeQuiet(encKex);
closeQuiet(decKex);
}
}
// helpers
private static byte[] randomBytes(int len) {
byte[] data = new byte[len];
new SecureRandom().nextBytes(data);
return data;
}
private static byte[] readAll(InputStream in) throws Exception {
try (ByteArrayOutputStream out = new ByteArrayOutputStream()) {
in.transferTo(out);
out.flush();
return out.toByteArray();
}
}
private static String lens(byte[] b) {
if (b == null) {
return "len=null";
}
return "len=" + b.length;
}
private static String shortHex(byte[] data, int maxBytes) {
if (data == null) {
return "null";
}
int n = Math.min(data.length, Math.max(0, maxBytes));
StringBuilder sb = new StringBuilder(n * 2 + 3);
for (int i = 0; i < n; i++) {
int v = data[i] & 0xFF;
sb.append(Character.forDigit((v >>> 4) & 0x0F, 16));
sb.append(Character.forDigit(v & 0x0F, 16));
}
if (data.length > n) {
sb.append("...");
}
return sb.toString();
}
private static void closeQuiet(HybridKexContext ctx) {
if (ctx == null) {
return;
}
try {
ctx.close();
} catch (Exception ignore) {
// ignore
}
}
}